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Finite-Element Solution of Planar
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Abstract — A uuified numerical approach based on the finite-element

method is described for the solution of planar inhomogeneous waveguides

for magnetostatic waves. Both magnetostatic volume wave and magneto-

static snrface wave modes are treated. The validity of the method is

confirmed by calculating the magnetostatic wave modes of layered YIG

films. The numericsd results of inhomogeneous YIG films with a-power

magnetization profile are afso presented, and the effects of magnetization

inhomogeneities on the delay characteristics and potential profiles for

magnetostatic forward volume wave, magnetostatic backward vohsme wave,

and magnetostatic surface wave modes are examined.

1. lNTRODUCTION

ECENTLY, MUCH attention has been paid to mag-R netostatic wave (MSW) modes in various complicated

structures such as multilayered and inhomogeneous films

to improve the delay characteristics [1]–[19]. Multilayer

structures [1], [6], [10], [11], [13], [15] can be viewed as

special cases of an arbitrary thickness variation of the

magnetization M,. The problem of arbitrary inhomogenei-

ties cannot be easily attacked by classical boundary value

techniques. Consequently, the variational method has been

geneities on the delay characteristics and potential profiles

for magnetostatic forward volume wave (MSFVW), mag-

rtetostatic backward volume wave (MSBVW), and MSSW

modes are examined.

II. BASIC EQUATIONS

We consider a multilayered inhomogeneous waveguide

for MSW modes as shown in Fig. l(a), where each ferrite

film has an arbitrary thickness variation of the magnetiza-

tion M,. When the bias field HO is applied in parallel with

the x, y, and z directions, MSFVW, MSBVW, and MSSW

modes propagate along the y direction, respectively.

The constitutive relations are

~=Po[P,l~ for ferrite (la)

B=poll for dielectric (lb)

where B is the magnetic flux density vector, H is the

magnetic field vector, p ~ is the permeability in free space,

and [p,] is the relative permeability tensor.
introduced for analyzing nonuniform geometries [7], [14], .

With a time dependence of the form exp ( jot) being
[16] -[19]. This method is valid for the solution of arbitrary implied, ~p,l takes the form

magnetization profiles. However, great care is necessary in

choosing the trial functions for fast convergence of the

numerical solutions.

In this paper, a unified numerical approach based on the

finite-element method is described for the solution of

planar inhomogeneous waveguides for MSW modes. Both

magnetostatic volume wave (MSVW) and magnetostatic

surface wave (MSSW) modes are treated. In the finite-ele-

ment method, the cross section of the planar waveguide is

divided into line elements [20], [21] and it is easy to

consider the variations in M,. Therefore, the finite-element

method enables one to compute easily and accurately the

delay characteristics and potential profiles of the planar

arbitrarily inhomogeneous MSW waveguides. The validity

of the method is confirmed by calculating MSW modes of

layered YIG films. The numerical results of inhomoge-

neous YIG films with a-power magnetization profile are

also presented, and the effects of magnetization inhomo-
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Here co,= – ypOH1, ti~ = – yp ~M~, y is the gyromagnetic
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Fig. 1. (a) Geometry of a planar MSW waveguide. (b) Line element

Assuming that there is no variation of all fields in the z

direction, from Maxwell’s equations and the magnetostatic

approximation condition, the following basic equations for

MSW waveguides are obtained:

dBX/dx – js~BY = O (4)

Hx = – aqlax (5a)

H,= js/3~ (5b)

where ~ is the phase constant in the y direction, s = + 1 is
a directional parameter [17], and @ is the magneto static

potential.

III. MATHEMATICAL FORMULATIONS

A. Finite-Element Approach

Dividing the region O < x < D into a number of second-

order line elements [20], [21] as shown in Fig. l(b), the

magnetic potential @ within each element is defined in

terms of the magnetic potentials @l to 03 at the nodal

points 1 to 3, as follows:

@={ N}~{4}eexp(–~s/3Y) (6)

where

{O}e=[% 4’2 @,]T (7)

{N}=[N1 N, N,]’. (8)

Here T, {.}, and {.} ‘denote a transpose, a column vector,

and a row vector, respectively, and the shape functions

NI – N3 are given by

NI=LI(2L1–1) (9a)

Nz = L2(2L2 –1) (9b)

N3 = 4LlL2 (9C)

where

L1 = (X2 – X)/(X2 – Xl) (lOa)

L2=(x–xl)/(x2– xl). (lOb)

Using a Galerkin procedure on (4), we obtain

~x’{N}(dBX/dx - js13By) dx= {O} (11)
~1

where {O} is a null vector.

Integrating by parts, (11) becomes

J’*(-{ .}N BX-js~{N }BY)dx+[BX]; E;;= {O} (12)
.X1

where {IVY} = d{ N}/dx.

Noting (l), (2), (5), and (6) and assembling the complete

matrix for the region O < x < D by adding the contribu-

tions of all different elements, the following global matrix

equation is derived:

[A]{@ }- BO/pO+B~/pO= {O} (13)

where

[A]=~~x2[{NX}{NX} ’+p#2{N}{N}’]dx
e xl

for MSFVW (14a)

[A]=~/x2[pe{NX} {NX}’+/32{N}{N} ’]dx
e xl

for MSBVW (14b)

[A]=~~x2[p,{Nx} {Nx}’+peP2{N}{N}’
e -xl

+s@({NX }{ N} ’+{ N}{ NX}~)]dx for MSSW.

(14C)

Here the components of { 9 } vector are the values of @

at the nodal points in the region O < x < D. BO and B~ are

the values of BY at the nodal points on x = O and x = D,

respectively, and z, extends over all different elements.

B. Analytical Solution in Dielectric

Considering BX = O at x = – t and x = D + h, we obtain

the following analytical solutions for the dielectric regions:

/@_coshP(x+t)exp(- jspy),

{

–t<x~o

0= @+cosh~(x –D–h)exp(–js~y),
(15)
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TABLE I

CONVERGENCE BEHAVIOR IN CALCULATION OF /3 FOR MSW

MODES OF HOMOGENEOUS WAVEGUIDES

I i3 . . ..t
■odes f(GHz) N.

- bFEMk

o.x*ct

(%)

2.85 1 0.0004’7

I 2.95 I I 0.00167
i 0.00024
4 0.00015

MSFVW I I I 0.00500
3.05 : 0.00042

4 0.00001

0.01315
3.,23 ! 0.00131

4 0.00006

2 0.13716
2.00 4 0.00656

5 0.00351

HSBVU 2 0.02533
2.50 0.00157

: 0.00064

I I 2 I 0.00176
2.60 4 0.00011

5 0.00005

12.20111 0.000003

0.00069
2.60 i 0.00005

HSSU 3
(s=1)

!0.00001
4 0.000005

I
0.43333

i 0.02768
2.90 : 0.00555

0.00176

2.20 1 0.00006
I I ,

0.00861
2.60 ; 0.00054

HSSW 3
(s=-1)

0.00011
4 0.00003

1
Mslm

Ms,max=l800 G

Ms,mln=1200 G
He3000 k
d=30 pm
h=835 pm
t,+ee

100 a=l

&J—————L—L—
5.0 6.0

F (Miz)

(a)

0.41790
i 0.02699

2.90 3 0.00538
4 0.00171 3~ ‘SFVW

where o+ and @_ are arbitrary constants.

From (15) and (16) we obtain

Bo/@o = – pofl tanhflt ‘ (17a)

B~/$~ = pop tanh~h (17b)

where 40 and +~ are the values of @ at the nodal points

x = O and x = D, respectively.

C. Combination of Finite-Element and Analytical Relations

Substituting (17) into (13), we obtain the following final

matrix equation:

[Al{@}+@#tanhPt+@#tanhPh= {0}. (18)
This equation determines the propagation characteristics

for various MSW modes.

IV. COMPUTED RESULTS

As a test for the numerical accuracy of the method

proposed here, we consider layered structures [1], [6], [10],

[11], [13], [15]. In the MSFVW case, consider a triple-

layered YIG film structure with M,l = 1750 G, dl = 90

‘a 2
-1

F=5.20 [GHz)

733

.

-2 -i o 1 2 3 4
xld

(b)

Fig. 2. MSFVW modes. (a) Delay characteristics. (b) Potential profiles.

pm, M,2 =1500 G, dz =10 pm, M~~ =1680 G, d~ = 7 #m,

h =127 pm, and t + co. In the MSBVW case, consider a

single film with M, =1200 G, d = 310pm, and h = 635 pm,

and t ~ co. In the MSSW case, consider a single-film with

M,=1750 G, d=10 ~m, h=25 pm, and t+oo. Table I

shows the relative error I/3eX.Ct– ~~~&’&X.Ct, where j3eX,Ct

and @~~~ are the exact solutions and the finite-element

solutions, respectively, and NE is the number of the line
elements. By using a few elements, a rapid convergence

can be obtained. In the MSFVW and MSSW cases, the

solutions near the upper cutoff frequency have a slower

convergence behavior. In the MSBVW case, on the other

hand, the solutions near the lower cutoff frequency have a

slower convergence behavior.
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Fig. 3. MSBVW modes. (a) Delay characteristics. (b) Potential profiles

As the numerical examples, we consider a single YIG

film with a-power magnetization profile, d =30 pm,

h = 635 pm, and t + co. The magnetization M. is given by

where M, ~= and M. ~i~ are the maximum and minimum
values of ‘M,, respectively.

Fig. 2(a) shows the group delay for MSFVW modes,

where M, ~= = 1800 G, M,, ~i~ = 1200 G, and HO= 3000
Oe. The potential profiles at ~ = 5.2 GHz are given in Fig.

2(b). The delay curves depend on the values of a. As the a

(b)

Fig. 4. MSSW modes propagating in the positive y direction (s= 1). (a)
Delay characteristics. (b) Potential profiles.

value becomes small, the group delay increases and the

potential has a stronger localization near a film surface.

Fig. 3(a) shows the group delay for MSBVW modes,

where M, ~a = 1800 G, M,, ~in = 1200 G, and HO= 600
Oe. The potential profiles at f = 2.85 GHz are given in

Fig. 3(b). The delay curves are not sensitive to the a value.

Figs. 4(a) and 5(a) show the group delay for MSSW

modes propagating in the positive (s =1) and negative

(s = – 1) y directions, respectively, where M, ~,,
= 1797 G, M,, tin= 1383 G, and HO= 400 Oe. The po~en-

tial profiles for both MSSW modes at $ = 2.9 GHz are

given in Figs. 4(b) and 5(b). In the case s =1, as the a
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Fig. 5. MSSW modes propagating in the negative y direction (s = – 1).

(a) Delay characteristics. (b) Potential profiles.

value becomes large, the delay peak moves toward lower

frequencies. This effect is similar to that obtained by

varying the dielectric thickness of the dielectric layered

homogeneous MSSW waveguide [1].

It is found from Figs. 2–5 that by changing the a value,

the group delay can be controlled and that a further
improvement in bandwidth for nondispersive MSW propa-

gation may be achieved using optimized magnetization

profiles.

In the above calculation, 19 elements are used. When the

convergence of the solution is not sufficient, the number of

elements is increased. Table II shows the convergence

TABLE II

CONVERGENCE BEHAVIOR IN CALCULAUON OF /3 FOR MSW

MODES OF INHOMOGENEOUS WAVEGUIDES

uodes

HSFVU

MSBVW

rlssu
(s=1)

Mssu
(s=-1)

4-YLIY’~29°’’’(%
++

5.10 0.12517
1 5.25 0.00202

5.70 0.00006

5.10 0.00005
2 5.30 0.000008

5.70 0.00002

G“
5.15 0.000000

3 5.50 0.000000
5.85 0.000000

2.10 0.00351
0.5 2.50 0.01658

2.90 0.25430

I 2.10

I

0.000009
3 2.50 0.000005

2.90 0.000330

2.63 0.06940
0.5 2.83 0.01188

3.03 0.01797

2.63 0.43200
1 2.83 0.000003

3.03 0.000000

2.63 2.24659
2 2.63 0.00003

3.03 0.000009

2.63 3.87759
3 2.83 0.00014

3.03 0.00005

2.83 0.06544
0.5 2.63 0.00665

3.03 0.00644

2.63 0.34885
1 2.83 0.000007

3.03 0.000008

2.63 1.13832
2 2.63 0.00007

3.03 0.00003

I 2.63

I

1.78663
3 2.83 0.00027

3.03 0.00008

behavior, where /llg and fi29 are the values of ~ obtained

by using 19 and 29 elements, respectively. The convergence

is dependent on the a value.

V. CONCLUSIONS

A finite-element method was developed for the analysis

of planar inhomogeneous waveguides for MSW modes.

Both MSVW and MSSW modes are treated in a unified

manner. In this approach, the nonphysical spurious solu-

tions do not appear. The validity of the method is con-

firmed by calculating MSW modes of layered YIG films.

The numerical results of inhomogeneous YIG films

with a-power magnetization profile are also presented,

and the effects of magnetization inhomogeneities on

the delay characteristics and potential profiles for MSFVW,

MSBVW, and MSSW modes are examined.

This method may be extended to three-dimensional in-

homogeneous MSW waveguides [7]1, [16].
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