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Abstract — A unified numerical approach based on the finite-element
method is described for the solution of planar inhomogeneous waveguides
for magnetostatic waves. Both magnetostatic volume wave and magneto-
static surface wave modes are treated. The validity of the method is
confirmed by calculating the magnetostatic wave modes of layered YIG
films. The numerical results of inhomogeneous YIG films with a-power
magnetization profile are also presented, and the effects of magnetization
inhomogeneities on the delay characteristics and potential profiles for
magnetostatic forward volume wave, magnetostatic backward volume wave,
and magnetostatic surface wave modes are examined.

I. INTRODUCTION

ECENTLY, MUCH attention has been paid to mag-

netostatic wave (MSW) modes in various complicated
structures such as multilayered and inhomogeneous films
to improve the delay characteristics [1}-[19]. Multilayer
structures [1], [6], [10], [11], [13], [15] can be viewed as
special cases of an arbitrary thickness variation of the
magnetization M. The problem of arbitrary inhomogenei-
ties cannot be easily attacked by classical boundary value
techniques. Consequently, the variational method has been
introduced for analyzing nonuniform geometries [7], [14],
[16]-[19]. This method is valid for the solution of arbitrary
magnetization profiles. However, great care is necessary in
choosing the trial functions for fast convergence of the
numerical solutions.

In this paper, a unified numerical approach based on the
finite-element method is described for the solution of
planar inhomogeneous waveguides for MSW modes. Both
magnetostatic volume wave (MSVW) and magnetostatic
surface wave (MSSW) modes are treated. In the finite-ele-
ment method, the cross section of the planar waveguide is
divided into line elements [20], [21] and it is easy to
consider the variations in M. Therefore, the finite-clement
method enables one to compute easily and accurately the
delay characteristics and potential profiles of the planar
arbitrarily inhomogeneous MSW waveguides. The validity
of the method is confirmed by calculating MSW modes of
layered YIG films. The numerical results of inhomoge-
neous YIG films with a-power magnetization profile are
also presented, and the effects of magnetization inhomo-
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geneities on the delay characteristics and potential profiles
for magnetostatic forward volume wave (MSFVW), mag-
netostatic backward volume wave (MSBVW), and MSSW
modes are examined.

IL.

We consider a multilayered inhomogeneous waveguide
for MSW modes as shown in Fig. 1(a), where each ferrite
film has an arbitrary thickness variation of the magnetiza-
tion M,. When the bias field H, is applied in parallel with
the x, y, and z directions, MSFVW, MSBVW, and MSSW
modes propagate along the y direction, respectively.

The constitutive relations are

B=p,lp,]H
B=u,H

Basic EQUATIONS

for ferrite

(1a)
(1b)

where B is the magnetic flux density vector, H is the
magnetic field vector, p, is the permeability in free space,
and [p,] is the relative permeability tensor.

With a time dependence of the form exp( jwt) being
implied, [p,] takes the form

for dielectric

1 0 0]
[, ]=10 » Jk for MSFVW  (2a)
0 —jk p|
0 e
[g,]J=10 1 0 for MSBVW  (2b)
R
[ w kO]
. (p]l={-jx pn O for MSSW (2¢)
| 0 0 1]
where
wt(wi+ wm)_ w2
= 3
o (32)
W, W
= 3b
. w? — w? ( )

1

Here w, = — yuoH,, »,, = — YloM,, v is the gyromagnetic
ratio, and H, is the internal magnetic field in the ferri-
magnetic film; H,= H,— M, for MSFVW and H =H,
for MSBVW and MSSW.
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Fig. 1. (a) Geometry of a planar MSW waveguide. (b) Line element
Assuming that there is no variation of all fields in the z
direction, from Maxwell’s equations and the magnetostatic
approximation condition, the following basic equations for
MSW waveguides are obtained:

dB,/dx — jspB,=0 4)
H =-3¢/0x (5a)
H, = jsBe (5b)

where £ is the phase constant in the y direction, s = +1 is
a directional parameter [17], and ¢ is the magnetostatic
potential.

III. MATHEMATICAL FORMULATIONS
A. Finite-Element Approach

Dividing the region 0 < x < D into a number of second-
order line elements [20], [21] as shown in Fig. 1(b), the
magnetic potential ¢ within each element is defined in
terms of the magnetic potentials ¢, to ¢, at the nodal
points 1 to 3, as follows:

¢={N}"{¢} exp(— jsBy) (6)

where
{¢}e=[¢1 o) ¢3]T (7)
{N}z[Nl N, N3]T~ (8)

Here T, {-}, and {-}Tdenote a transpose, a column vector,
and a row vector, respectively, and the shape functions
N, — N, are given by
N = L1(2L1 _1)
N,= L2(2L2 ‘1)

(9a)
(9b)

N,=4L,L, (9¢)

where
Ly=(x,—x)/(x,— x) (10a)
L,= (x=x)/(x;, = x). (10b)

Using a Galerkin procedure on (4), we obtain

[Ny (0B, 05— jspB,) dx= (0) (1)

where {0} is a null vector.
Integrating by parts, (11) becomes

LU= NI B~ sB(N)B) s+ [BJEZ3 = (0) (12)

where { N} =d{N }/dx.

Noting (1), (2), (5), and (6) and assembling the complete
matrix for the region 0 < x < D by adding the contribu-
tions of all different elements, the following global matrix
equation is derived:

[4]{¢}— By/mo+ Bp/1o= {0} (13)

where
[41=X [N (M) T+ B2 (NN} ] ds

T for MSFVW  (14a)
[4]= X [Tw NN T+ B2 (NN T

o for MSBVW  (14b)
(4] =2 [[n A NIV T+ pf (V) (V)

+ s BN N} +{N}{N,}7)]dx  for MSSW.

(14c)

Here the components of {¢} vector are the values of ¢

at the nodal points in the region 0 < x < D. B and By, are

the values of B, at the nodal points on x =0 and x = D,
respectively, and 3., extends over all different elements.

B. Analytical Solution in Dielectric
Considering B, =0 at x=—1¢ and x = D + h, we obtain
the following analytical solutions for the dielectric regions:
¢_coshB(x+¢t)exp(— jsBy),
-1<x<0
¢ coshB(x—D—h)exp(— jsBy),
Dgx<sD+h

o= (15)



LONG et al.: FINITE-ELEMENT SOLUTION OF PLANAR INHOMOGENEOUS WAVEGUIDES

TABLEI .
CONVERGENCE BEHAVIOR IN CALCULATION OF 8 FOR MSW
Mobges oF HOMOGENEOUS WAVEGUIDES

I B axact — Breml
modes f(GHz) Ne (%)
B exect

2.85 1 0.00047
1 0.00167
2.95 2 0.00024
4 0.00015
MSFVV 1 0.00500
3.05 2 0.00042
4 0.00001
1 0.01315
3.23 2 0.00131
4 0.00006
2 0.137186
2.00 4 0.008586
5 0.00351
HSBVV 2 0.02533
2.50 4 0.00157
5 0.00064
2 0.00178
2.80 4 0.00011
5 0.00005

2.20 1 0.000003
1 0.00069
. 2.60 2 0.00005
MSSv 3 10.00001

(s=1) 4 0.000005
1 0.43333
2 0.02788
2.90 3 0.00555
4 0.00176
2.20 1 0.00008
1 0.00861
2.60 2 0.00054
MSSW 3 0.00011
(s=-1) 4 0.00003
1 0.41790
2 0.02699
2.90 3 0.00538
[ 0.00171

— poBé_ sinh B(x +t)exp (— jsBy),
-1<x<0
B, = SES ) (16)
— poB¢. sinh B(x ~ D — h)exp(~ jsBy),
DLx<D+h
where ¢, and ¢_ are arbitrary constants.
From (15) and (16) we obtain
By /¢y = — poB tanh Bt " (17a)
B /¢p=poB tanh Bh (17b)
where ¢, and ¢, are the values of ¢ at the nodal points
x =0 and x = D, respectively.
C. Combination of Finite-Element and Analytical Relations

Substituting (17) into (13), we obtain the following final
matrix equation:

[A4){ ¢} + ¢,Btanh Bt + oL tanh Br = {0}. (18)

This equation determines the propagation characteristics
for various MSW modes. '

IV. CoMPUTED RESULTS

As a test for the numerical accuracy of the method
proposed here, we consider layered structures [1], [6], [10],
[11], [13], [15]. In the MSFVW case, consider a triple-
layered YIG film structure with M;=1750 G, d,=90
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Fig. 2. MSFVW modes. (a) Delay characteristics. (b) Potential profiles.

pm, M, =1500 G, d,=10 pm, M;=1680 G, d; =7 pm,
h =127 pm, and ¢ — co. In the MSBVW case, consider a
single film with M, =1200 G, d =30 pm, and 4 = 635 pm,
and ¢ — 0. In the MSSW case, consider a single-film with
M. =1750 G, d =10 pm, h=25 pm, and ¢ > oco. Table 1
shows the relative error |B.,,c; — Breml/Bexact» Where Bece
and PBggy are the exact solutions and the finite-element
solutions, respectively, and N, is the number of the line
elements. By using a few elements, a rapid convergence
can be obtained. In the MSFVW and MSSW cases, the
solutions near the upper cutoff frequency have a slower
convergence behavior. In the MSBVW case, on the other
hand, the solutions near the lower cutoff frequency have a
slower convergence behavior.



734

150
MSBYW
Ms,max=1800 G
- Ms,min=1200 G
He~=600 Oe
d=30 gm
h=635 pm
t=>

1001

DELAY {(ns/mm)

50
L. a=0.5

2.0
F (GHz)

(a)

NSBVN
2] F=2.85 (GHz)

1T g—
—
m—— 13

Potential

x/d

(b)
Fig. 3. MSBVW modes. (a) Delay characteristics. (b) Potential profiles.

As the numerical examples, we consider a single YIG
film with a-power magnetization profile, d =30 pm,
h =635 pm, and r — co. The magnetization M, is given by

Ms = Ms,min+(Ms,max - Ms,mm)[(d_ X)/d] * (19)

where M, .. and M, . are the maximum and minimum
values of M, respectively.

Fig. 2(a) shows the group delay for MSFVW modes,
where M, . =1800 G, M, ... =1200 G, and H,= 3000
Oe. The potential profiles at f = 5.2 GHz are given in Fig.
2(b). The delay curves depend on the values of a. As the a
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Fig. 4. MSSW modes propagating in the positive y direction (s = 1). (a)
Delay characteristics. (b) Potential profiles.

value becomes small, the group delay increases and the
potential has a stronger localization near a film surface.
Fig. 3(a) shows the group delay for MSBVW modes,
where M, ... =1800 G, M, . =1200 G, and H,=600
Oe. The potential profiles at f=2.85 GHz are given in
Fig. 3(b). The delay curves are not sensitive to the a value.
Figs. 4(a) and 5(a) show the group delay for MSSW
modes propagating in the positive (s =1) and negative
(s = —1) y directions, respectively, where M, ox
=1797 G, M, ,,,=1383 G, and H, =400 Oe. The poten-
tial profiles for both MSSW modes at f=2.9 GHz are
given in Figs. 4(b) and 5(b). In the case s =1, as the «
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Fig. 5. MSSW modes propagating in the negative y direction (s = —1).
(a) Delay characteristics. (b) Potential profiles.

value becomes large, the delay peak moves toward lower
frequencies. This effect is similar to that obtained by
varying the dielectric thickness of the dielectric layered
homogeneous MSSW waveguide [1]. .

It is found from Figs. 2--5 that by changing the « value,
the group delay can be controlled and that a further
improvement in bandwidth for nondispersive MSW propa-
gation may be achieved using optimized magnetization
profiles.

In the above calculation, 19 elements are used. When the
convergence of the solution is not sufficient, the number of
elements is increased. Table II shows the convergence
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TABLE I
CONVERGENCE BEHAVIOR IN CALCULATION OF 8 FOR MSW
MODES OF INHOMOGENEOUS WAVEGUIDES

1 8 = Bl
wodes o f(GHz) — (%)
B 2
5.10 0.12517
1 5.25 0.00202
5.70 0.00006
5.10 0.00005
MSFVW 2 5.30 0.000008
5.70 0.00002
5.15 0.000000
3 5.50 0.000000
5.85 0.000000
2.10 0.00351
0.5 2.50 0.01658
2.90 0.25430
2.10 0.00002
MSBVW 1 2.50 0.000002
2.90 0.27022
2.10 0.000009
3 2.50 0.000005
2.90 06.000330
2.63 0.06940
0.5 2.83 0.01188
3.03 0.01797
2.63 0.43200
1 2.83 0.000003
MSSW 3.03 0.000000
(s=1)
2.63 2.24659
2 2.83 0.00003
3.03 0.000009
2.63 3.67759
3 2.83 0.00014
3.03 0.00005
2.63 0.06544
0.5 2.83 0.00685
3.03 0.00644
2.63 0.34885
1 2.83 0.000007
MSSW 3.03 0.000008
(s=-1)
2.63 1.13832
2 2.83 0.00007
3.03 0.00003
2.63 1.78663
3 2.83 0.00027
3.03 0.00006

behavior, where 8,, and f,, are the values of B obtained
by using 19 and 29 elements, respectively. The convergence
is dependent on the « value.

V. CONCLUSIONS

A finite-element method was developed for the analysis
of planar inhomogeneous waveguides for MSW modes.
Both MSVW and MSSW modes are treated in a unified
manner. In this approach, the nonphysical spurious solu-
tions do not appear. The validity of the method is con-
firmed by calculating MSW modes of layered YIG films.
The numerical results of inhomogeneous YIG films
with a-power magnetization profile are also presented,
and the effects of magnetization inhomogeneities on
the delay characteristics and potential profiles for MSFVW,
MSBVW, and MSSW modes are examined.

This method may be extended to three-dimensional in-
homogeneous MSW waveguides [7), [16].
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